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1 Introduction.

In 1974 Dennis and Moré [3] gave a characterization of those quasi-Newton methods
for the nonlinear equation problem which produce iterates which are Q-superlinearly con-
vergent. This characterization immediately carries over to unconstrained optimization by
working with the nonlinear equation (gradient equal to zero) that results from the first-
order necessary conditions. Similarly the Dennis-Moré characterization can be carried over
to equality constrained optimization by working with the nonlinear system corresponding
to the first-order necessary conditions. This nonlinear system, involves the two groups of
variables (z,y). Here z is the vector of primal variables, and y is the vector of dual variables
corresponding to the equality constraints. Hence the approach characterizes Q-superlinear
convergence in terms of the variable-pair (z,y). Indeed, the first authors to establish Q-
superlinear convergence for various secant methods for equality constrained optimization,
Han (8] in 1976, Tapia [12] in 1977, and Glad [7] in 1979, did so using this approach and
established Q-superlinear convergence in the pair (z,y). Not long after, in 1982, Boggs,
Tolle, and Wang [1] observed that under certain assumptions, various quasi-Newton secant
methods for equality constrained optimization actually give Q-superlinear convergence in the
primal variable z alone. They then proceeded to establish a characterization of those quasi-
Newton methods that produced iterates which are Q-superlinearly convergent in the primal
variable z alone. Nocedal and Overton [9] in 1983, and Fontecilla, Steihaug, and Tapia [6] in
1987 derived the Bogss-Tolle-Wang characterization under less restrictive assumptions than
those used by Boggs, Tolle, and Wang. Finally, in 1987 Stoer and Tapia [11] gave a very
short and self-contained derivation of the Boggs-Tolle-Wang characterization.

Recently, there has been activity in extending the successful primal-dual Newton interior-
point method from linear programming to general nonlinear programming. In linear pro-
gramming, the primal-dual Newton method, although not initially presented in this man-
ner, is now recognized as a damped and perturbed Newton method applied to the Karush-
Kuhn-Tucker (KKT) necessary conditions. This interpretation serves as the vehicle for their
extension to nonlinear programming. In 1992, El-Bakry, Tapia, Tsuchiya, and Zhang [5]
established the local convergence properties of the Newton interior-point method for NLP .
These convergence results are in line with those of the standard Newton’s method. In 1993
Yamashita and Yabe [14] considered quasi-Newton interior-point formulations and used the
Dennis-Moré theory to derive a characterization of those methods which gave Q-superlinear
convergence in all of the variables. The KKT conditions involve a vector of primal variables
z, a vector of dual variables y corresponding to equality constraints, and a vector of dual
variables z corresponding to the nonnegative constraints on the primal variables z. Hence
the variables consist of the triple (z,y,z), and z and z are required to be nonnegative.

We see from the Boggs-Tolle-Wang theory that while the variables involved in quasi-
Newton methods for equality constrained optimization are the primal variables z and the
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dual variables y, it is possible to obtain a characterization result in terms of the primal
variables alone. Hence, in some sense the primal variables are also the primary variables.
This understanding led us initially to try to obtain a characterization in terms of the primal
variables z also for quasi-Newton interior-point methods. However, we could not do so with-
out including some undesirable assumption on the interaction between the primal variable z
and the dual variables z. This, in turn, led us to search for a characterization in terms of the
variables (z,2). Our search was successful and is the subject of the current research. It is
interesting then, that in the sense alluded to above, the primary variables for quasi-Newton
interior-point methods are the nonnegative variables (z, ).

This paper is organized as follows. In Section 2, with an eye towards our main character-
ization result, we study the characterization of Q-superlinear convergence for a damped and
perturbed quasi-Newton method for the nonlinear equation problem. Our intention is not to
give a complete theory for the topic, but to develop the tools needed for our interior-point
application. In Section 3, we describe our quasi-Newton interior-point method. In Section
4, we derive an equivalence between our quasi-Newton interior-point method and a damped
and perturbed quasi-Newton method for a system of nonlinear equations that involves only
the variables (z,z). This equivalence has the flavor of the approach taken by Stoer and
Tapia [11] when they derived the Boggs-Tolle-Wang characterization. In Section 5, we apply
the theory developed in Section 2 to the equivalent formulation obtained in Section 4 and
establish our main characterization results.

2 Characterization for damped and perturbed quasi-
Newton methods.

In this section we formulate and study a damped and perturbed quasi-Newton method for
the nonlinear equation problem. Our objective is to derive characterization results concerning
Q-superlinear convergence that can be used to establish our main characterization theorem
for quasi-Newton interior-point methods in Section 5.

Consider the nonlinear equation problem
F(z)=0 (2.1)

where F : R® — R". Recall that the standard Newton’s method theory assumptions for
problem (2.1) are

S1. There exists z* € R™ such that F(z*) = 0.

S2. The Jacobian matrix F’'(z*) is nonsingular.



S3. The Jacobian operator F’ is Lipschitz continuous at z* in an open convex neighborhood
of z*, with Lipschitz constant v > 0.

As usual the expressions Fy, Fiyy and F, denote the evaluation of the function F at the
points i, Ti4+1, and z* respectively. Similar notation will be used for other quantities.

By a damped and perturbed quasi-Newton method for problem (2.1), we mean
the construction of the iteration sequence

Th1 = Tk — oA Fi—1] , k=0,1,2,... . (2.2)

In (2.2), 0 < ax <1 is the steplength parameter, r, € R" is a perturbation vector , and
Ai is an approximation to Fj.

We begin by collecting some known useful facts. Toward this end let e; = r; — z* and
Sk = Ti41 — Tk; assume S1 - S3, and that {z;} converges to z*.
There exists a constant p > 0 such that for k sufficiently large

1
Slerll< IFI< pllell - (2.3)

A proof of (2.3) can be found, for example, in Dembo, Eisenstat, and Steihaug [2]. It
follows that

llecall 50 llsill -1, (2.4)
llex|| llexll
and
lewssl oo, IFenl o (25)
||l ex]| skl

To establish (2.4) we merely need to observe that exy; = sx + ex. Moreover, (2.5) follows
directly once we write
[kl _ [ Fegall ||l

lexll— Hsell Tlexl

The next two theorems will motivate choices for the steplength a) and the perturbation
vector r.

Theorem 2.1. Let {z} be generated by (2.2). Assume that S1, S2, and S3 hold and that
zr — =*.Then any two of the following statements imply the third:

(2) zx — z* Q-superlinearly.

vy qe 1—0p)Fil| _
(i6) lim.—ooo Iesneifienlill — o,



(i5) limy— oo WdmEdeell — o,

Proof. Adding and substracting the appropriate quantities, we have

Fiy1 = [Fegr — Fo — Flsi] — [Ax — Fllsi + [axre + (1 — ax) Fi). (2.6)
From (2.5), (1) is equivalent to
lim Eeall = 0.
12 T
Using Lemma 4.1.15 in [4] we have
s
IFiss ~ e = Fispll < Loyl + el (2.7

The remainder of the proof is fairly straightforward.
O

Observe that if for all £, ax = 1 and r; = 0, then (2.2) becomes the standard quasi-
Newton method; moreover, in this case condition (i?) is trivially satisfied and Theorem 2.1
reduces to the standard Dennis-Moré characterization.

Condition (7) tells us that essentially for Q-superlinear convergence we must have ay — 1
and ry = o(||sk||). We are somewhat concerned with this latter requirement for the following
reason. Qur expectation is to be able to control the size of the perturbation vector r;
however, at the begining of the iteration when we must choose ri, the step s; is unknown
to us. For this reason we look for a similar condition involving ||Fk||, a quantity which is
readily available. However, we must add an assumption concerning the rate of convergence

of {z}.

Theorem 2.2. Let {zi} be generated by (2.2). Assume that S1, S2, and S3 hold and that
zr — z*.Then any two of the following statements imply the third.

1) xp — x2* Q-superlinearly.
D y

(1) limg—eo lowra+(1—ox)Fi||

Al = 0 and the convergence of {z\} to z* is Q-linear.

Wl =0
sk

Proof. We must show that any two conditions in Theorem 2.1 are equivalent to the
corresponding two conditions in Theorem 2.2. Observe that from (2.3), the fact that s =
ex+1 — ek, and the Q-linear convergence of {z;} to z*, there exist positive constants 3;and £,
such that for k sufficiently large

(i35)’ Timp—oco

B 1 pB2
< < ,
pllFell ~ IISgII = | F|

(2.8)



The proof of the theorem now follows from Theorem 2.1, and (2.8).
]

The assumption in (i)’ concerning the rate of convergence of {z;} can be replaced by
the following weaker statement:

The set

Q1" ({zx}) = { limit éoints of{w}} ,

does not contain one and oo, for at least one norm.

Clearly the set Qi*({zx}) depends on the norm selected. The largest element of
Q1" ({z+}) is the well-known Q,-factor. For more detail on this issue, see Chapter 9 of
Ortega and Rheinboldt [10].

In terms of secant methods the assumption that {z\} converges to z* Q-linearly, seems
not to be restrictive. In fact if the matrices { Ax} satisfy a standard bounded deterioration
property, as do the well-known secant methods, then in an appropriate norm, z; — z*,
Q-linear. (see Chapter 8 of Dennis and Schnabel [4] for more detail ).

Theorem 2.2 tells us that in order to obtain Q-superlinear convergence we should have
rt = o(]|Fx]|) and ax — 1. We find it interesting that this is exactly the condition given by
Dembo, Eisenstat, and Steihaug [2] for Q-superlinear convergence of their inexact Newton
method. Actually, they chose ax = 1 for all k. An obvious choice for the perturbation
vector is ri = oy||Fi|| where o € (0,1] and ox — 0 as k — oo.

3 Primal-dual quasi-Newton interior-point method.

In this section we formulate a primal-dual quasi-Newton interior-point method for
solving the constrained optimization problem.

minimize  f(z)
subject to  h(z)
T

0 (3.1)
0

(AVAN

where f : R - R and h: R™ — R™ are twice continuously differentiable functions.

The Lagrangian function associated with problem (3.1) is given by
U(2,3,2) = £(2) +yh(z) — T (32)

where y € R™ , and z € R™ are the Lagrange multipliers associated with the constraints
h(z) =0, and z > 0 respectively.



The Karush-Kuhn-Tucker (KKT) conditions for problem (3.1) are

V,l(:c,y,é)

F(z,y,2) = ( ;1{(;) ) =0, (z,2) 20, (3.3)

where X = diag(r), Z = diag(z) and e € R" is the vector of all ones.

Observe that the inequality constraints in problem (3.1), z; > 0, ¢ = 1,...,n, can
be written e;Tz > 0, ¢ = 1,...,n where ¢; is the i — th natural basis vector, i.e., the i — th
component is one while all other components are zero. For z, a feasible point of problem (3.1),
we let B(x) = {i: z; = 0}. As is usual in constrained optimization B(z) is the set of active
or binding inequality constraints. We will have need below to consider the gradient of active

constraints. It should be clear that this set will be {e; € R" : ¢ € B(z)}.
In the study of Newton’s method, the standard assumptions for problem (3.1) are

A.1. (Existence) There exists (z*,y*, z*) a solution to problem (3.1) and its associated La-
grange multipliers satisfying the KKT conditions (3.3).

A.2. (Smoothness) The Hessian operators V2f, V2h;, i = 1,...,m are locally Lipschitz con-
tinuous at z*.

A.3. (Regularity) The set {Vhi(z*):i=1,...,m}U{e; : ¢ € B(z*)} is linearly independent.

A.4. (Second-Order Sufficiency) For all 5 # 0 satisfying Vh;(z*)Tn =0, i = 1,...,m; &,Tn =
0, ¢ € B(z*) we have TV, 2l(z*,y*, 2*)n > 0

A.5. (Strict Complementarity) For all ¢, 2! + z¥ > 0.

For a nonnegative parameter p, the perturbed KKT conditions associated to (3.3) are

V. i(z,y,z)
Fu(l‘,y’z) = h(x)
XZe — pe

=0, (z,2) >0, (3.4)

We describe a primal-dual quasi-Newton interior-point method for solving problem (3.1).



Algorithm 1. Let wg = (2o, Yo, 20) be an initial point satisfaying (zo, 20) > 0.

For k = 0,1, ..., until convergence do
Stepl. Choose o € (0,1] and set ux = oxR; for some R € R.
Step2. Obtain Awy = (Azy, Ayx, Az;)T as the solution of the linear system

MkAwk = —F“k(wk) (35)
where
G Vhe -1,
M=l VT 0 o
Z 0 X

Step3. Choose 7; € (0,1) and set
ar = min(l, Teay)
ary =1 or apy = ax
where

_ . -1 -1
@ = min - e .
* {mzn(Xk—lek,—l) " min(Z; 1Azk,—l)}
Step4. Update
W1 = Wi + ArAwy
where Ap = diag(ag, ..., Qk, Oky, ..., Qiy, Qiy ..., Q&)
in above the three groups of scalars have n, m, and n members respectively.

The choice for R, will be in general ||F(w;)||; however we leave it open to obtain a
certain amount of needed flexibility in the statement of our theorems in Section 5.

The choice G = V?,l(wy) corresponds to Newton’s method. For this choice El-Bakry,
Tapia, Tsuchiya, and Zhang [5] established local convergence, superlinear convergence, and
quadratic convergence for Algorithm 1 for the appropriate choices of 7, and Rj. Yamashita
(13] considered a somewhat different steplength than that described in Step 3, this choice
was based on a particular merit function. He then established a global convergence result
for his line-search algorithm. El-Bakry et al [5] also gave a global convergence result for a
line-search globalization of their form of Algorithm 1. Observe that the choice of steplength
in Step 3, ax = max and 7% € (0,1) keep zi41 and zpy; positive. If 7, was chosen to
be equal to one, then at least one component of x4, or z;,; would be zero. We could
use different steplengths also for the z and z variables, The obvious choice would be to let
aky = min(l, Txér;), and ax, = min(l, 7xax,), where

-1

min(X; ' Az, —1)’
8

Ay =



and
-1

- min(Z; Az, —1)

Since the asymptotic properties of these choices are essentially the same, we will not
concern ourselves with other choices of steplength parameters. It should be clear that the
algorithmic choices are the choices of 7 , o} ,and G} the approximation to VZ,I(wg). Our
objective is to characterize Q-superlinear convergence in terms of the algorithmic choices.
A straightforward application of Theorem 2.2 would lead to a characterization in terms of
all the variables (z,y,z). Such activity would be incomplete since for equality constrained
optimization, where the z-variable is not present, the Bogss-Tolle-Wang characterization
is in term of the z-variable alone. Effectively, the y-variable can be removed from the
problem as demostrated by Stoer and Tapia {11]. Our first initial efforts in the current
research attempted to obtain such a characterization for Algorithm 1; however we could
not do so without making assumptions which we considered undesirable. Therefore, we
turned to attempting a characterization in terms of the (z, z)-variables and were successful.
It follows then that in this application the primary variables are z and z, each carries
independent information and can not be removed from the problem. In retrospective we find
this occurrence fitting and not surprising.

Qg

4 An equivalent formulation.

In this section we imitate the approach taken by Stoer and Tapia [11] in deriving
the Boggs-Tolle-Wang characterization for equality constrained optimization. Our task is
to construct a quasi-Newton method that involves only the (z,z)-variables, is equivalent
to Algorithm 1 of Section 3, and has the form of a damped and perturbed quasi-Newton
method as described by (2.2). This equivalence will allow us, in Section 5, to apply our
characterization Theorem 2.2.

Assumption A3 allows us to locally, i.e., in a neighborhood of z*, consider the projection
operator

P(z) = I — Vh(z)[Vh(z)TVh(z)]'Vh(z)T . (4.1)
In turn this allows us to consider the nonlinear equation
o) ( PEITID L 93 VHRE ) w2)

Observe that Fy : R?® — R?". We now demonstrate that Algorithm 1 is equivalent to
a damped and perturbed quasi-Newton method applied to equation (4.2). Toward this end
let (zk, Yk, zk), Gk, and pi be as in the k-th iteration of Algorithm 1 and consider the linear
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system

PGy + thVhZ‘ -P Az
Zk Xk AZk

In (4.3), € is the 2n-vector whose first n components are zero and whose last n compo-
nents are one. We will also need to consider the formula

= —(Fo(zk, zx) — pré). (4.3)

yit = — (VA Vh) ' VAT (GrAzi + V fi — (2k + Azi)) (4.4)

where (Azg, Az;) is the solution of (4.3).

Proposition 4.1. Let (z*,y*,2*) be a solution of the KKT conditions (3.3) at which the
standard assumptions A1-AS5 hold. Then (z*,2*) is a solution of the nonlinear equation (4.2)
and the standard Newton’s method assumptions S1-S3 hold for Fy at this solution. Moreover,
if (Azk, Ayr, Azi) is a solution of the linear system (3.5) , then (Azy, Azy) is a solution of
the linear system (4.3). Conversely, if (Azy,Azi) is a solution of the linear system (4.3)
and we let Ayx = yi* — yi, where yi* is given by (4.4), then (Axi, Ayi, Azi) is a solution
of the linear system (3.5) .

Proof. We begin by establishing the equivalence between the linear systems (3.5) and (4.3).
Writing out (3.5) in detail gives

GrAzy + thAyk - Az
VhI Az,
Iy Az + XAz

—(Vfi + Vheyr — 2)
—hs (4.5)
—XiZre + pre .

Writing out (4.3) in detail gives

(Pka + thVhf)Amk — P.Az ——(Pk(ka — zk) + thhk)
Zir Az + XAz = —-XiZi + Hke .

(4.6)

We observe that we can write
Pi|GrAzi + V fi — (2 + Az)] = Ge Az + Vi — (21 + Azi) + Vheyet (4.7)

where y;* is given by (4.4).

Now, suppose (Azg, Ayx, Az;) solves (4.5). Multiplying the first equation by P, the
second equation by Vh;, adding the two resulting equations, and recalling that P,Vh; =0
leads us to the first equation in (4.6). Hence (Azg, Az:) solves (4.6). Conversely, suppose
(Azy, Az) solves (4.6). Multiplying the first equation by VAT gives the second equation
in (4.5). This in turn tells us that the first equation in (4.6) now implies that the left-
hand side of (4.7) is zero. Hence the right-hand side is zero and the first equation in (4.5)
holds with yx + Ayx = yxt. This establishes the equivalence of the two linear systems (4.5)

10



and (4.6).
If (z*,y*, 2*) solves (3.3), then clearly (z*, z*) solves (4.2). Observing that P(z)(V f(z)—

z) = P(z)(Vf(z) + Vh(z)y*(z*,2*) — 2z) and y*(z*,2*) = y* we see that

PV (2", y", 2*) + VA VAT —P*) , (4.8)

Fo'(z*,2") = ( Z X

An argument along the lines of the one given above can be used to show that the linear
system

Fo'(z*,2%) ( Z ) =0 (4.9)

z

is equivalent to the linear system

Nz
F’(x‘7 y*’z‘) ( 7’!1 ) = 0 (410)

Nz

where F is given by (3.3). Under the standard assumptions A1-A5, for F' given by (3.3),
we know that F’(z*,y*,2*) is nonsingular. Hence Fy/(z*,2*) must also be nonsingular. It
should be clear that Fy and F have the same smoothess properties. This says that assump-
tions S1-83, appropriately stated, hold for Fy at (z*, 2*). We have now established our
equivalence proposition. .

(]

We have shown that obtaining (z,zx) from Algorithm 1 can be viewed as obtaining
(Z&, z) from a damped and perturbed quasi-Newton method applied to the nonlinear equa-
tion Fy(z,z) = 0 given by (4.2). Moreover, the approximate Jacobian has the form

( PGy + thVhf —-P )

Py X, (4.11)

and the Jacobian at the solution is given by (4.8).

We are now ready to state our Q-superlinear convergence results.

5 Q-superlinear convergence characterization.

In this section we apply the theory developed in Section 2 to the primal-dual quasi-
Newton interior-point method described by Algorithm 1 of Section 3. Recall that Gy is our
approximation to G. = V2f(z*) + VZh(z*)y*. Also Ry appears in Step 1 of Algorithm 1.

Theorem 5.1. Let {(zk,yk,2x)} be generated by Algorithm 1. Assume that {(xk, Yk, 2k)}
11



converges to (z*,y*,z*) and assumptions A1-AS5 hold at (z*,y*,2*). Furthermore, assume
that 7, and o have been chosen so that
(Z) m — 1.
(it) o — 0.

Assume that either Ry = O(||si||), where sy = (Tk41, Yk+1, Zk41) — (Tk, Yk, 2k), o7 R =
O(||F(xk, yx, z)||) and {(zk,yx,2k)} converges to (z*,y*,2*) Q-linearly.
Then {(zk,yk, zk)} converges Q-superlinearly to (z*,y*,2*) if and only if

I(Gx — Gu)(zr41 — 24| -0 (5.12)
lzk4r — zi)l + Nlyesr — yell + ll2zk41 — 2|

Assume that either Ry = O(||sk||) where sk = (Tk41, 2k41)—(Zk, 2&) or Re = O(]| Fo(zk, zx)||),
where Fy is given by (4.2), and {(zk, )} converges to (z*,2*) Q-linearly Then {(zx,z2:)}
converges QQ-superlinearly to (z*, z*) if and only if

1Pe(Gr = G) (@ — 2l (5.13)
lze+1 =zl + || zr41 — 2]l

Proof. The proof of the theorem follows by applying Theorem 2.1, Theorem 2.2, and
Proposition 4.1, and using (3.5), (4.8), and (4.11). We have used the following fact concerning
norms in finite dimensional spaces. Let u € R™ and v € R™. Also let || ||, be a norm on
R", || ||,, a norm on R™, and || || a norm on R™*™. Then there exist positive constants
0, and 6, such that

n+m

Ol + 1[vllm) < N 2)llngm < O2(lllly + Hvll,n) - (5.14)

A proof of (5.14) can be obtained by working with the /; norm and the equivalence
of norms property. We also used the fact that 7, — 1 implies oy — 1 (see Step 3 of
Algorithm 1) under our assumptions. This fact can be found in Yamashita and Yabe [14].
Finally, we have removed all quantities that converged to zero and were redundant in the
characterization result.

a

Yamashita and Yabe [14] gave a characterization which has the flavor of (5.12). However,
their assumptions were somewhat more restrictive.
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